If it's not what You are looking for type in the equation solver your own equation and let us solve it.
a^2-5a-7=0
a = 1; b = -5; c = -7;
Δ = b2-4ac
Δ = -52-4·1·(-7)
Δ = 53
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$a_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-\sqrt{53}}{2*1}=\frac{5-\sqrt{53}}{2} $$a_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+\sqrt{53}}{2*1}=\frac{5+\sqrt{53}}{2} $
| 4x+9=8+3x | | 3.3+10m=7.62 | | 8(2n+2)=6(9n+9)+9 | | 2=5x=7 | | a^2+(5-a)^2-49=0 | | 2+1a=3 | | 7y+3(y-2)=5(y+1)-2 | | 5(-8+b)=25 | | Y=-15+6x | | u+12-4=5 | | 4.2+10m=7.14 | | -4(3t-3)+8t=3t-5 | | -2x-9=-3x+14 | | -5/3x=15/5 | | 6561=m^2 | | -(y+2)=1/2y+4 | | 2x+3x-7=8 | | -3(2t-3)+2t=3t-6 | | 7(+c)=1 | | 11x+8=10x+9 | | -5x+25=20x+10 | | 5x+2(x−4)=5x+x−10 | | 7(1/4+c)=21/3 | | X^(-2)=y+2 | | 2(x=7)=4x | | 12x-2=11x+57 | | -6=2+2u | | 4÷3w-2÷1w-4=12 | | 4=32x | | 4(1/4+c)=2 | | H^2-8h=0 | | 5x-2=9x+4 |